
A Hierar
hi
al Component Model for Large

Parallel Intera
tive Appli
ations

Jean-Denis Lesage and Bruno Ra�n

INRIA
Laboratoire d'Informatique de Grenoble (LIG)

Email: jean-denis.lesage�imag.fr and bruno.raffin�imag.fr

Abstra
t. This paper fo
uses on parallel intera
tive appli
ations rang-
ing from s
ienti�
 visualization, to virtual reality or 
omputational steer-
ing. Intera
tivity makes them parti
ular on three main aspe
ts: they are
endlessly iterative, use advan
ed I/O devi
es, and must perform under
strong performan
e 
onstraints (laten
y, refresh rate). A data �ow graph
is a 
ommon approa
h to des
ribe su
h appli
ations. Edges represent
data streams while verti
es are nodes pro
essing in
oming data streams
and produ
ing new data streams. When appli
ations be
ome large this
approa
h shows its limits in terms of maintainability and portability. In
this paper, we propose to use the 
omposite design pattern to extend this
model for supporting hierar
hies of 
omponents. The 
omponent hierar-

hy is traversed to instantiate the appli
ation and extra
t the data �ow
graph required for the exe
ution. This approa
h has been implemented
for the FlowVR middleware. It enables to de�ne parametri
 
omposite

omponents, 
ommonly 
alled skeletons, that 
an be reused in various
appli
ations. This approa
h proved to signi�
antly leverage appli
ation
modularity as presented in di�erent 
ase studies.
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1 Introdu
tion

An intera
tive appli
ation involves a program and a user intera
ting in an end-

less iterative pro
ess through input and output devi
es. It is often referred to a

"human in the loop simulation". Today, an emerging 
lass of intera
tive appli
a-

tions intends to asso
iate virtual reality, s
ienti�
 visualization, simulation and

appli
ation steering. It leads to very 
omplex appli
ations 
oupling advan
ed

I/O devi
es, large data sets, various parallel 
odes. To be intera
tive, these ap-

pli
ations must perform under strong performan
e 
onstraints, often measured

in terms of laten
y and refresh rate.

For example, the Her
ules system 
ouples an earthquake simulation and an

on-line visualization using 2000 pro
essors to rea
h the frequen
y of 2Hz on a



1200 billions elements simulation [1℄. Other initiatives intend to design 
ross-


ontinental intera
tive appli
ations relying on the performan
e of opti
al net-

working [2℄. A number of virtual reality appli
ations are relying on parallel ma-


hines to provide the required I/O and 
omputing resour
es. Blue-C [3℄ and

Grimage [4℄ are good examples of high performan
e immersive platforms relying

on parallel ma
hines to pro
ess in real time data a
quired through a network of


ameras.

In this paper, we fo
us on two issues fa
ed when designing su
h appli
ations:

� Software engineering issues where multiple pie
es of 
odes (simulation 
odes,

graphi
s rendering 
odes, devi
e drivers, et
.), developed by di�erent per-

sons, during di�erent periods of time, have to be integrated in the same

framework to properly work together.

� Hardware performan
e limitations bypassed by multiplying the units avail-

able (disks, CPUs, GPUs, 
ameras, video proje
tors, et
.), but introdu
ing

at the same time extra 
omplexity. In parti
ular it often requires to intro-

du
e parallel algorithms and data redistribution strategies, that should be

generi
 enough to minimize human intervention when the target exe
ution

platform 
hanges.

Most iterative appli
ations 
an be seen as an assembly of stati
 tasks endlessly

pro
essing in
oming data and forwarding results to other tasks. Many s
ienti�


visualization tools use this data �ow graph model to spe
ify the appli
ations [5℄.

But the graph tends to qui
kly be
ome 
omplex as the appli
ation size grows,

impairing the modularity.

In this paper, we propose to rely on the 
omposite design pattern to extend

the data �ow graph model. Edges are 
omponents that 
an re
ursively 
ontain

other 
omponents. Verti
es link sibling 
omponent ports or parent/
hild ports.

To enfor
e the generi
ity of the des
ribed appli
ation, 
omponents defer intro-

spe
tion and auto-
on�guration pro
esses to 
ontrollers. A 
ontroller is lo
al to

a given 
omponent, but it may get extra data 
onsulting the state of the neigh-

bor 
omponents or through external data repositories. These 
ontrollers, that


an generate new 
omponents for instan
e, are 
alled re
ursively and repeatedly

in a traverse pro
ess until rea
hing a �xed point. A traverse either leads to an

error (missing data impairs the traverse 
ompletion) or a su

ess. For instan
e

a traverse is 
alled to extra
t the data �ow graph required for the exe
ution

from this hierar
hi
al appli
ation des
ription. This approa
h enables us to de�ne

highly generi
 
omposite 
omponents, enfor
ing the appli
ation maintainability

and portability. In parti
ular, we 
an de�ne skeletons, i.e. parametri
 
omposite


omponents, that en
apsulate 
ommonly used and optimized parallel pro
essing

patterns. This approa
h has been implemented for the FlowVR middleware [6℄.

Se
tion 2 dis
usses related works. After an overview of FlowVR (se
tion 3),

we present the hierar
hi
al 
omponent model in se
tion 4. Se
tion 5 presents a


olle
tion of skeletons built using our model. Se
tion 6 fo
uses on 2 
ase studies

to dis
us the bene�ts of our approa
h on real appli
ations, before to 
on
lude in

se
tion 7.



2 Related Work

The goal of s
ienti�
 visualization is to pro
ess large data sets to 
ompute im-

ages. Intera
tivity enables for instan
e users to 
hange their point of view on

the data set or the transfer fun
tion applied for volume rendering. Appli
ations

are developed with visualization environments like OpenDX [7℄, Iris Explorer [8℄

or VTK [9℄. These environments are usually based on a data �ow graph model

where pro
essing tasks re
eive data and generate new ones. Most of them sup-

port parallel exe
utions. An appli
ation is basi
ally a list of �lters applied to the

data set before rendering. The �rst natural level of parallelism is to distribute

the di�erent steps of the �lter pipeline on di�erent ma
hines. Be
ause the data

set is read only, the pipeline 
an easily be dupli
ated and exe
uted in parallel

on sub parts of the data set [10℄. Advan
ed parallel rendering algorithms exist,

based for instan
e on spe
i�
 parallel data stru
tures and dynami
 work bal-

an
ing s
hemes. In this 
ase they are implemented on their own, usually using


lassi
al parallel programming languages, be
ause visualization environements

do not provide the ne
essary 
onstru
ts [11℄.

Attempts to asso
iate virtual reality, s
ienti�
 visualization and simulations

push forward the 
omplexity of intera
tive appli
ations. They involve various

simulation 
odes that may generate large data sets, advan
ed I/O devi
es, like

network of 
ameras, proje
tor arrays, hapti
 devi
es. Pipeline must be used

with 
are. It improves the appli
ation frequen
y, but also in
reases the laten
y.

So to ensure a good trade-o� between frequen
y and laten
y multiple forms of

parallelism are asso
iated, from pipelines or data parallelism to dynami
 task

parallelism.

In virtual reality, to ensure an e�
ient data redistribution between paral-

lel algorithms that may run at di�erent and varying frequen
ies, 
omplex 
ou-

pling s
hemes asso
iating data re-sampling and 
olle
tive 
ommuni
ations are re-

quired. Dedi
ated environments like FlowVR [6℄, OpenMask [12℄ or COVISE [13℄

propose di�erent approa
hes to support su
h features. However, the resulting ap-

pli
ation 
ode tends to be di�
ult to be maintained when rea
hing a 
ertain size.

Conne
tivity between pro
essing tasks (
ommuni
ation 
hannels) are expressed

by dire
t links between the 
orresponding elements: it requires the 
on
erned el-

ements be dire
tly visible one from ea
h other, preventing attempts to strongly

stru
ture the 
ode by en
apsulating patterns in methods or fun
tions.

Component models, like CCA (Common Component Ar
hite
ture) or CCM

(Corba Component Model), provide Ar
hite
ture Des
ription Languages for dis-

tributed appli
ations. SCIRun, an environment dedi
ated to s
ienti�
 visualiza-

tion, is based on the CCA model [14℄. Some extensions intend to enfor
e the

support of parallel 
omponents and the asso
iated 
oupling patterns [15℄. But

these models su�er from the same limitations as the systems mentioned earlier

(FlowVR, COVISE) regarding the modularity of parallel 
omponent 
oupling.

Fra
tal [16℄ is a hierar
hi
al 
omponent model. We are aware of one implemen-

tation of Fra
tal for parallel (grid) appli
ations: ProA
tive [17℄. A ProA
tive


omposite 
omponent 
an be a parallel 
omponent. But redistribution patterns



are 
oded into the ports of the parallel 
omponents. A pattern 
annot be modi-

�ed without modifying the 
omponent, limiting the appli
ation modularity.

The skeleton model proposes a pattern language for parallel programming [18,

19℄. A program is written from the 
omposition of prede�ned parallel patterns.

Various environments rely on this model like ASSIST [20℄ for grid 
omputing

or Skipper [21℄ for vision appli
ations. Skeletons have a 
lear semanti
s, 
an be

asso
iated to a 
ost model and hide their implementation details to the appli
a-

tion developer. Given the target ar
hite
ture, the appli
ation is 
ompiled down

to a spe
ialized parallel 
ode. Hierar
hies of skeletons are supported by some

environments like Skipper-D.

With the emergen
e of multi
ore ar
hite
tures and GPU programming, some

programming environments propose to fo
us on a stream paradigm, like StreamIT

[22℄, Brook [23℄ or Cg [24℄. They target streaming appli
ations like video, voi
e

or DSP programming. A program is usually a set of iterative modules that 
om-

muni
ate via FIFO data 
hannels. Parallelism is expressed by the 
omposition of

a redu
ed number of skeletons. For example, in StreamIT, developers are allowed

to use 3 kinds of skeletons: Pipeline, SplitJoin and FeedBa
k Loop. By limiting

the available skeletons, it 
onstrains the program to simple data parallel a

ess

patterns, enabling to write e�
ient 
ompilers for the targeted ar
hite
ture. It is

however too restri
tive to ensure e�
ient exe
utions on a general purpose and

potentially heterogeneous parallel ma
hine.

3 FlowVR

We present in this se
tion FlowVR [6℄. Our 
omponent model relies on this mid-

dleware. FlowVR is dedi
ated to parallel intera
tive appli
ations. It is based on

the data �ow model also used by other s
ienti�
 visualization tools. A FlowVR

appli
ation is a network of stati
 iterative pro
esses 
onne
ted by data �ow


hannels. The main target appli
ations in
lude virtual reality and s
ienti�
 vi-

sualization.

FlowVR has been used for developing various large intera
tive appli
ations [25,

26℄. FlowVR is open sour
e1. It is distributed with extensions like FlowVR-

Render that enables distributed rendering or VTK-FlowVR that en
apsulates

VTK[9℄ appli
ations into FlowVR Modules [27℄.

3.1 FlowVR Run-time

An appli
ation is 
omposed of modules ex
hanging data through a FlowVR net-

work. A module is an endless iterative 
ode that de�nes input and output ports.

At ea
h iteration it reads in
oming data from input ports, pro
esses these data

and writes the results on output ports. A module runs in its own independent

pro
ess or thread, thus redu
ing the e�ort required to turn an existing 
ode into

a module. For instan
e an MPI program 
an be modi�ed to de�ne one module

per pro
ess.

1 FlowVR is available at http://�owvr.sf.net



The FlowVR network is handled at run-time by a FlowVR daemon running

on ea
h host of the target ma
hine. Daemons a
t as brokers. They relay messages

between modules. Modules are not aware of the existen
e of other modules. A

module only ex
hanges data with the daemon that runs on the same host. If

the destination module runs on the same host, the daemon gives this module

a pointer to the data (messages are stored in shared memory segments). If the

destination runs on a distant host, the module sends the data to the daemon of

this host using TCP. At re
eption the daemon stores the message in a shared

memory segment and handles a pointer to the destination module.

The role of the daemon is not limited to data forwarding. It 
an load plugins

to pro
ess data, dupli
ate, merge or split messages for instan
e. The user 
an

de�ne its own plugins if required. Noti
e that plugins have a less restri
ted

a

ess to the shared memory than modules, enabling to implement more e�
ient

message handling a
tions.

Ea
h FlowVR appli
ation is managed by a spe
ial module, 
alled a 
ontroller,

automati
ally loaded at starting time. The 
ontroller �rst starts the appli
ation's

modules using their own laun
hing 
ommand, ssh or mpirun for instan
e. On
e

laun
hed, modules register to their lo
al daemon that sends an a
knowledgment

to the 
ontroller. Then, the 
ontroller sends to ea
h daemon the routing table

and list of plugins to load to implement the FlowVR network.

3.2 Flat Data Flow Graph

Fig. 1. The �at data �ow graph of a large FlowVR appli
ation. Edges represent pro-

essing tasks and verti
es data 
hannels.



At low level a FlowVR appli
ation is modeled by a �at data �ow graph


omposed of:

� Modules with input and output ports, ea
h one is mapped on a given host,
� Filters that are daemon plugins. Like modules, �lters have input and output

ports, and are mapped on a given host.
� Conne
tions that represent FIFO data 
hannels. A 
onne
tion 
onne
ts one

sour
e input port to a destination output port.
� Routing nodes that have one input port and one or more output ports. They

are assigned to a given host and model message routing a
tions.

In the �rst versions of FlowVR, the appli
ation developer had to spe
ify its

appli
ation des
ribing this graph. He was assisted by a library of Perl fun
tions

that en
apsulated some 
ommonly used patterns. However large appli
ations

proved di�
ult to debug and maintain, motivating the adoption of a hierar
hi
al

approa
h to further enfor
e the appli
ation modularity (Fig. 1).

4 Component Model

We adopt a hierar
hi
al 
omponent model to des
ribe a FlowVR appli
ation. It

is based on the 
omposite design pattern [28℄.

4.1 Hierar
hi
al Components

A 
omponent has an interfa
e de�ned by a set of ports. We distinguish two kinds

of 
omponents:

Primitive 
omponents. A primitive 
omponent is a base 
omponent that 
an-

not 
ontain an other 
omponent. Primitive 
omponents are modules, �lters,

routing nodes and 
onne
tions.
Composite 
omponents. A 
omposite 
omponent 
ontains other 
omponents

(
omposite or primitive). It has input and output ports. A port is visible from

both, the outside and the inside of the 
omponent. It identi�es the data

that 
an 
ross a 
omponent boundary. Component en
apsulation is stri
t. A


omponent 
an not be dire
tly 
ontained into two parent 
omponents.

4.2 Links

A link 
onne
ts two 
omponent ports. It 
annot dire
tly 
ross a 
omponent

membrane. A link between 2 ports is allowed only for the 2 following 
ases:

� A des
endant link 
onne
ts a port of a parent 
omposite 
omponent to a port

of one of its 
hild 
omponent. Su
h links must always 
onne
t an input/input

or output/output pair of ports.
� A sibling link 
onne
ts two ports of two 
omponents having the same parent


omponent. Su
h a link must always 
onne
t an input/output pair of ports.

Port typing 
an be enfor
ed if required, putting more 
onstraints on the ports

that 
an be linked. For instan
e, link 
ould be restrained to 
onne
t only ports


orresponding to the same data type.



4.3 Example

Fig. 2. Appli
ation example. Computes simulates the dynami
s of a ball falling into
a water tank. Results transit up to Render for rendering. Capture forwards mouse
positions to Render that uses them to render the simulation s
ene with the point of
view requested by the user.

Throughout this paper, we use a simple example (Fig. 2). It shows the 
las-

si
al stru
ture of a basi
 intera
tive appli
ation. In this iterative simulation,


omponent Computes publishes its state at ea
h iteration. We 
an for instan
e


onsider that this simulation 
omputes the dynami
s of a ball falling into a

water tank. Ea
h simulation state is re
eived by a Render 
omponent. For a

given point of view, this 
omponent 
omputes an image giving a view on the

simulation s
ene. The user 
an 
ontrol this point of view with a mouse. A Cap-

ture 
omponent is in 
harge of reading the mouse position and forwarding it to

Render.

For sake of simpli
ity, we keep this appli
ation syn
hronous, i.e. the Render


omponent 
an only start the next iteration if it re
eives data from Computes

and Capture. Often real appli
ations loose this syn
hronization by introdu
ing

data sampling 
omponents (a sampling pattern is presented in se
tion 5).

Using the hierar
hi
al 
omponent model, the example is stru
tured as follows

(Fig. 2):



Fig. 3. a) Two levels of hierar
hy for the Conne
t 
omponent. The skeleton de�ned by
NtoOne is generated a

ording to the number of Computes primitive 
omponents. b)
The �at data �ow graph for the appli
ation. Dashed sets show the 
omposite 
ompo-
nents the graph elements are related to (
onne
tions are arrows, modules are in green
and �lters in blue).



� As the Capture and Render 
omponents are 
losely related, they are stored

in a 
omposite 
omponent 
alled Visualization. This en
apsulation is a 
om-

modity that enables to easily reuse this assembly having just to handle the

Visualization 
omponent.

� The Computes 
omponent is a
tually a parallel appli
ation that spawns n

pro
esses. The goal is to be able to speed-up the simulation involving more

pro
essors if available. Computes is modeled as a 
omposite 
omponent with

one output port out to send its simulation state at ea
h iteration. It 
on-

tains n 
hild 
omponents Compute/0,..., Compute/n-1. These are primitive


omponents, ea
h one having an output port out linked to the out port of

Computes. The value n and where these n pro
esses are mapped on a target

ar
hite
ture is unknown at the time of the appli
ation design. They will be

instantiated later when traversing the appli
ation to 
all 
on�guration 
on-

trollers. Noti
e that 
ommuni
ations 
an take pla
e between the di�erent

parallel pro
esses, but they are not modeled here. We 
onsider that they are

under the responsibility of the programming environment used to parallelized

the appli
ation, MPI for instan
e.

� Computes being a parallel 
omponent, ea
h pro
ess spawned 
omputes one

part of the simulation state. The Visualization 
omponent is not designed to

re
eived partial results. We 
ould modify the Visualization 
omponent, but

we a
tually prefer to manage this issue outside of this 
omponent. Appli
a-

tion modularity is enfor
ed by delegating data redistribution issues to spe-


ialized 
omponents. We use an extra 
omponent, 
alled Conne
t, between

Computes and Visualization. Conne
t is in 
harge of gathering the partial

results from the various Compute/i pro
esses to forward a single message


ontaining a full simulation state to Visualization. Conne
t is a 
omposite


omponent (Fig. 3.a). It is built from the NtoOne 
omponent. This 
om-

ponent en
apsulates a generi
 tree pattern for data redistribution. Conne
t

just set the parameters of NtoOne: the arity of the tree (2) and the type

of the 
omponent used for the tree nodes (Merge). The a
tual 
ontent of

NtoOne is only known on
e Computes is properly instantiated. Only at this

point NtoOne knows how many pie
es of data it has to gather to set the

tree depth. The NtoOne 
on�guration 
ontroller must be exe
uted after the

Computes 
on�guration 
ontroller. We see here that the traverse algorithm

in 
harge of exe
uting the 
on�guration 
ontrollers has to respe
t a given

pro
essing order. A possible traverse order is: Computes, Visualization, Con-

ne
t, NtoOne, Merge/0, Merge/1, Merge/2, Compute/0, Compute/1, Com-

pute/2, Compute/3, Capture, Render. Merge is a primitive 
omponent that

builds one message sent on its out port from the 2 messages it reads on its

in/0 and in/1 ports.

Noti
e that if the appli
ation is 
on�gured with only one 
omponent Com-

pute/0, Merge be
omes a simple point-to-point 
onne
tion between Compute/0

and Render.

The model we propose �rst target appli
ations with stati
 
omponents, i.e.

without 
omponents 
reated while the appli
ation is running. Be
ause of their



iterative nature, intera
tive appli
ations tend to be mostly stati
. However, if

required for some parts of the appli
ation, a 
omponent 
an dynami
ally 
reate

or kill threads or pro
esses as long as it implements a proxy that hides this

dynami
 behavior. We are also working on extending the model to support some

level of run-time re
on�guration.

4.4 Controllers

To improve the appli
ation generi
ity and thus its portability, instantiation of

some 
omponent aspe
ts are deferred to 
ontrollers. A 
ontroller is lo
al to a


omponent. It 
an only modify the state of its 
omponent. It 
an read the state

of other 
omponents its owner is linked to (dire
tly or not). A 
omponent 
an

have several 
ontrollers. It usually enfor
es modularity to have multiple spe
ialize


ontrollers. We distinguish 2 types of 
ontrollers:

� An introspe
tion 
ontrollers just get data from its 
omponent. For instan
e

an introspe
tion 
ontroller 
an be dedi
ated to print its 
omponent name in

a �le.

� A 
on�guration 
ontroller modi�es its 
omponent state. In the example ap-

pli
ation, the 
hild 
omponents of Computes are generated by su
h a 
on-

troller.

Controllers are 
alled during an appli
ation traverse. Usually one traverse

just 
alls one 
ontroller per 
omponent. During a traverse, parameters 
an be

ex
hanged between 
ontrollers. It enables for instan
e to ex
hange a �le des
rip-

tor where ea
h 
ontroller appends the name of its 
omponent. The �nal result

of the traverse is a list of all appli
ation 
omponents. The result may of 
ourse

depend on the exe
ution order of the di�erent traverses.

Our model imposes one 
on�guration 
ontroller, 
alled exe
ute. This 
on-

troller 
reates 
hild 
omponents. For example, in the Computes 
omponent, the

exe
ute 
ontroller 
reates all Compute/i primitive 
omponents and links them to

Computes. Data distribution 
omponents usually have exe
ute 
ontrollers that

need to get data from the neighbor 
omponents. For instan
e, the exe
ute 
on-

troller of NtoOne needs to get the number of Compute/i 
omponents to 
reate

the merging tree.

Developers 
an 
reate 
ontrollers dedi
ated to a given aspe
t. A 
ontroller


an be in 
harge of mapping primitive 
omponents to the target ar
hite
ture

pro
essors. Implementing mapping in a 
ontroller enables to keep the appli
ation

des
ription independent of the mapping. In FlowVR, the appli
ation is �rst

traversed to 
all the exe
ute 
ontroller, then a mapping 
ontroller is 
alled, and

a third 
ontroller generates the �at data �ow graph.

An other example of introspe
tion 
ontroller used for FlowVR is the 
om-

mand line generator. The 
onstru
tion of 
ommand lines to laun
h modules is

delegated to an introspe
tion 
ontroller. This 
ontroller builds a 
ommand line

using data related to the FlowVR network (hosts list, number of pro
esses), 
on-

�guration �les (target ar
hite
ture des
ription) or user parameters (appli
ation



spe
i�
 parameters). This spe
i�
 
ontroller is embedded into 
omposite 
om-

ponents 
alled metamodules. A metamodule handles modules that are logi
ally

related, in parti
ular when they are all started from a single 
ommand. This is

for instan
e the 
ase for a MPI 
ode that uses mpirun to start all its pro
esses.

Noti
e that a 
ontroller 
an be seen as an aspe
t (in the Aspe
t Oriented

Programming way). Nevertheless, we do not have 
ode weaving. Controllers are

embedded in 
omponents by the programmer.

4.5 Traverse Algorithm

As seen for the example (Se
tion 4.3), in a traverse the exe
ution of 
ontrollers

may need to obey a 
ertain order to respe
t data dependen
ies. We propose

a simple algorithm that guarantees to 
omplete the traverse when possible or

return the list of misprogrammed 
omponents if some data dependen
ies 
annot

be solved whatever the exe
ution order is.

The traverse algorithm is a greedy pro
ess. The algorithm manages a queue

of non-exe
uted 
omponents, initialized with the top-level 
omponents of the ap-

pli
ation. For ea
h 
omponent in this queue, the algorithm tries to exe
ute the

asso
iated 
ontroller. If the 
ontroller is su

essfully exe
uted, then all of its 
hil-

dren are pushed in the queue. Otherwise, the algorithm restores the 
omponent

initial state and push it at the end of the queue. The traverse ends su

essfully

when the queue is empty. If no 
ontroller 
an be 
alled on the rest of the 
om-

ponents in the list, then the algorithm stops in a fail state. The 
ontroller of the

remaining 
omponents 
annot be exe
uted either be
ause at least one of these


omponents is mis
on�gured (a parameter is not instantiated for instan
e), or

be
ause a 
y
le of dependen
ies has been introdu
ed when assembling the 
om-

ponents.

4.6 Traverse Proof

We prove the traverse algorithm always ends, with su

ess if a solution exists,

and that the number of 
ontroller 
alls, su

essful or not, is at most quadrati


in the number of 
omponents.

Let C be the set of all 
omponents in an appli
ation and Ncomp the size

of C. The goal of the algorithm is to iterate on all 
omponents in C with a


onsistant order. We put in the non-exe
uted queue a marker that denotes the

starting point. Ea
h time the marker 
omes ba
k to the front of the queue, it

is appended at the end of the queue. We 
ount the number of times the marker

has rea
hed the front sin
e the algorithm started. It denotes what we 
all in the

following the number of iterations.

Let NonExecutedk = {c ∈ C/ the 
ontroller of c has not been exe
uted

at the iteration k } and Executedk = {c ∈ C/ the 
ontroller of c has been

su

essfully exe
uted during the iteration k }. We 
all N the iteration that

rea
hes a �xed point, i.e. the �rst iteration where ExecutedN = ∅. In this 
ase,

the algorithm stops. The mis
on�gured 
omponents or dependen
y 
y
les are


ontained in NonExecutedN .



Let Ek =
⋃k

i=1
(Executedi) be the set of 
omponents su

essfully exe
uted

from the �rst to the kth iteration. Let Ek =
⋃∞

i=k (NonExecutedi) be the set of

omponents that have to be exe
uted after the iteration k.

We 
all E∞ =
⋂∞

i=1
Ei the set of 
omponents that 
annot be exe
uted.

Thus we have:

� ∀k,C = Ek ⊕ Ek

� E0 = C and E0 = ∅

We �rst prove the algorithm always ends.

Proposition 1. The traverse algorithm rea
hes a �xed-point with N ≤ Ncomp

and NonExecutedN = E∞

Proof. During exe
ution of traverse, we are assured that ExecutedN 6= ∅, so for
all k we have Ek+1 =

⋃∞

i=k+1
(NonExecutedi) ⊂

⋃∞

i=k (NonExecutedi) ⊂ Ek.

So EN de
reases to E∞. The algorithm rea
hes a �xed-point where limk→∞Ek =
E∞.

As C = Ek ⊕ Ek, if at the iteration k we have Ek = Ek+1 then Ek = Ek+1.

So the algorithm rea
hes the �xed-point at k.

Consequently Ek stri
tly de
reases to E∞ ⇒ N ≤ |E0| = Ncomp.

We now fo
us on the 
omplexity of the algorithm.

Proposition 2. The traverse algorithm performs at most N2
comp 
alls to 
on-

trollers.

Proof. Let Calls be the total of 
alls to 
ontroller. Calls =
∑

k≤N |NonExecutedk|.
Previously, we proved:

� N ≤ Ncomp

� ∀k,NonExecutedk ⊂ C ⇒ |NonExecutedk| ≤ Ncomp

So Calls ≤ N2
comp

The overhead due to unsu

essful 
ontroller 
alls 
an be signi�
ant. But

implementing an algorithm that solves all 
onstraints to identify an a

eptable

exe
ution order would be 
omplex or it would require the appli
ation developer

to en
ode extra information into its program to help that algorithm. Our solution

is a good trade-o� between s
alability and 
omplexity of the implementation. We

experimented appli
ations with 200 
omponents. Traverse 
omputation time is

about one se
ond only.

We now 
hara
terize E∞, the set of remaining 
omponents. Let Data = {c ∈
C / c 
annot be exe
uted be
ause a data is missing } and Dep = {c ∈ C /

c 
annot be exe
uted be
ause it depends on a 
omponent that has not been

exe
uted yet }. No other reason 
an lead to a 
ontroller 
all failure. So we have

E∞ = Data ∪ Dep.

Proposition 3. If Data = ∅ and E∞ = Dep 6= ∅ then there is at least one

dependen
y 
y
le in E∞



Proof. Assume there is no dependen
e 
y
le in Dep. So there is a longest de-

penden
y path. Let c and d be the 
omponents at the extremities of one of the

longest dependen
y paths.

But be
ause c belongs to Dep and not to Data (Data = ∅), there exists e in

Dep su
h as c depends on e. So the path from e to d is longer than the longest

path from c to d. It 
ontradi
ts the assumption: there is a dependen
e 
y
le in

Dep.

This proposition shows the traverse algorithm 
an help debugging an appli-


ation. If the traverse fails, the user should �rst �x the 
omponents with missing

data. Usually su
h �aws are dete
ted when the 
ontroller fails if error raising

has been properly programmed. Next, if the algorithm still fails, the user should

look at suppressing the 
y
li
 dependen
ies. In our implementation we rely on

ex
eptions to signal when 
ontroller fail.

4.7 The FlowVR Front-end

The hierar
hi
al 
omponent model only a�e
ts the front-end of FlowVR (Fig. 4).

The run-time engine is not modi�ed. Components are written in C++ and 
om-

piled into shared libraries. An appli
ation is also a 
omposite 
omponent 
om-

piled into a shared library. It 
an thus be reused in other appli
ations without

being re
ompiled. The FlowVR front-end loads the appli
ation and applies a

sequen
e of several traverses to produ
e the list of 
ommands to start the mod-

ules and the instru
tions to forward to the di�erent daemons to implement the

appli
ation network. The �at data �ow graph is usually saved as it is useful for

debugging purpose.

5 Skeletons

We present four base parametri
 
omposite 
omponents, i.e. skeletons, that

proved to be very useful for developing intera
tive appli
ations. These skeletons

provide users an easy way to handle parallel pro
essing patterns or 
omplex


ommuni
ation s
hemes. These skeletons fully take advantage of the 
omponent

hierar
hy and modularity provided by the 
ontroller based approa
h. They are

templated to enfor
e their generi
ity. Their instantiation is deferred to their

exe
ute 
ontroller (Se
t. 4.4):

Pipeline This is a very simple skeleton modeling a sequen
e of pre
essing steps.

It is modeled by a 
omposite 
omponent 
ontaining an arbitrary sequen
e

of linked 
omponents (primitives or 
omposite).

Parallel This skeleton 
reates N instan
es of a 
omponent passed as a tem-

plate. The skeleton 
reates the same ports than the template 
omponent.

On
e the internal 
omponents 
reated, their ports are linked to their equiv-

alent skeleton ports. The Computes 
omponent in our example 
ould have

been alternatively designed by en
apsulating a Parallel 
omponent pattern

using Compute as template 
omponent. This skeleton 
an be used as a shell



Fig. 4. The FlowVR front-end. Components (left to righ) are 
ompiled, loaded and
traversed to provide the module laun
hing 
ommands and the instru
tions for deamons.
On
e 
ompiled, modules (top to bottom) are started as requested by the appli
ation.



for dupli
ating a given 
omponent. It 
an also be used to en
apsulate a

stati
 parallel program. In this 
ase 
ommuni
ations due to parallelization

are not visible from the 
omponent point of view. We 
onsider the parallel

programming environment used for the parallelization takes 
are of these


ommuni
ations.

Tree A tree skeletons has two ports, the root and the leaves. The number of

leaves in the tree is de�ned a traverse time a

ording to the number of

neighbors 
onne
ted to the leaves port. We distinguish 2 spe
ializations of the

tree depending on the data propagation dire
tion, either from root to leaves

(the OnetoN 
omponent) or from leaves to root (the NtoOne 
omponent).

The arity of the tree is a parameter to be instantiated. The node type used to

build the tree is a template pattern. Here are some examples of 
omponents

pattern built from Tree:

Broad
ast The simplest skeleton that 
an be built from the tree. It uses

the OnetoN skeleton instantiated with a primitive 
omponent, a rout-

ing node, that forwards the messages it re
eives on its input to ea
h of

its outputs. The arity of the broad
ast tree depends on the number of

outputs of the template 
omponent.

S
atter Similar to the Broad
ast ex
ept that the template 
omponent splits

the input message into sub-messages forwarded on its outputs. For in-

stan
e, a 
lassi
al 3D rendering parallelization approa
h, 
alled sort-

�rst [29℄, 
onsists in having a task responsible for one area of the s
reen

(Fig. 5.a). Thus, a task only requires to exe
ute the graphi
s primi-

tives that will 
ontribute to its s
reen area. To distribute the graphi
s

primitive, we 
an use a S
atter with a Culling 
omponent that uses a

fast method to test if a graphi
s primitive 
ontributes to a given s
reen

area [27℄.

Gather A OneToN tree that uses a message merging template pattern.

Using a template 
omponent that sorts the integers it re
eives, it 
reates

a distributed merge sort (Fig. 5.b). This skeleton is also used by the

Conne
t 
omponent of our example (Fig. 3).

Sampling This skeleton is spe
i�
 to intera
tive appli
ations where tasks may

run at di�erent frequen
ies. For example, a physi
al simulation has to run at

high frequen
y to be stable, while graphi
s rendering usually runs between 30

and 60 Hz. If the two tasks are dire
tly 
onne
ted with a FIFO 
onne
tion, it

will for
e both tasks to run a the frequen
y of the slowest one, the rendering

task in this 
ase. To avoid this issue a 
ommon approa
h is to sample the

in
oming signal. This sampling 
ould be performed by the rendering task,

making the rendering task less generi
. To enfor
e the modularity, we design

a spe
ial skeleton that samples data streams under the 
ontrol of their desti-

nation tasks. With this approa
h neither the sour
e neither the destination

tasks need to be modi�ed or even re
ompiled. The sampling skeleton is an

assembly of 2 
omposite 
omponents (Fig. 5.
):

� The Filter 
omposite 
omponent analyzes and samples the in
oming

data stream a

ording to an external poli
y. It has four ports : in re
eives



the in
oming data stream, out produ
es the sampled signal, freq sends

the frequen
y of the in
oming stream and order re
eives sampling orders.

� The Sampler 
omposite 
omponent 
ontrols the sampling poli
y. It has

two ports : freq re
eives the frequen
y of the in
oming stream and order

sends orders about the stream sampling. Using the in
oming stream

frequen
y, it de
ides the messages that have to be dis
arded and the

ones to replay.
By 
hanging the template 
omponents Sampler and Filter di�erent sampling

strategies 
an be implemented.

Be
ause there is no dis
ontinuity from primitive 
omponents to high-level


omposite ones, the developer 
an freely 
hoose to 
ombine, extend, spe
ialize

or simply ignore these skeletons. In a sense the approa
h we propose is very 
lose

to the one of the C++ Standard Template Library. This skeletons 
an also be

seen as a derivative of Cools skeletons [18℄ for a spe
i�
 appli
ation domain.

One of the main di�eren
e is the absen
e of 
ost model.

Fig. 5. a) Sort-�rst s
atter pattern. The Culling 
omponents route the graphi
s primi-
tive for rendering the bunny a

ording to the s
reen area they proje
t onto. b) Integer
merge-sort s
atter pattern. 
) Sampling pattern. Filter is the operative part of the 
om-
muni
ation: it pro
esses sampling on in
oming messages �ow. Sampler is the 
ontrol
part: it de
ides the sampling poli
y.

6 Case Studies

In this se
tion, we present two 
ase studies taking advantage of the 
omponent

hierar
hy and the skeletons presented in previous se
tions. The �rst appli
ation



shows an example of 
oupling MPI and FlowVR. The se
ond example is an

intera
tive 3D modeling appli
ation using a 
amera network.

6.1 Case Study 1: MPI Fluid Simulation

We implemented a �uid simulation algorithm [30℄ using MPI (Fig. 6.a). This

appli
ation shows how to integrate a MPI 
ode. The �uid simulation is based on

a 2D grid of 
ells. At ea
h new iteration, a new state is 
omputed for ea
h grid


ell. This state depends on the state at the previous iteration of the 
onsidered


ell and its four neighbors. The simulation is parallelized by splitting the grid


ell into blo
ks distributed amongst the di�erent MPI pro
esses. Data ex
hange

between blo
ks are MPI 
ommuni
ations, transparent to FlowVR. The MPI 
ode

is modi�ed so that ea
h pro
ess is a FlowVR module with one output port to

send the result of ea
h iteration. These modules are 
alled Fluid/0 .... Fluid/N,

the number being assigned based on the rank provided by MPI. Beside the a
tual

MPI 
ode of the modules, a Fluid primitive 
omponent is written. A metamodule

Metamodule-MPI implements the 
ontroller to generate the laun
hing 
ommand

using mpirun. It also 
ontain a parallel skeleton that 
reates the 
orre
t number

of instan
es of the Fluid module. It is important here that the ranking be the

same as the one assigned by MPI. The Metamodule-MPI 
omponent is linked to

a Gather skeleton (Fig. 5.b) using a 2DMerge �lter as template. The goal here is

to gather the results of ea
h MPI pro
ess into one full 2D grid forwarded to an

OpenGL renderer. For more implementation details refer to the �uid example

provided with the FlowVR sour
e 
ode.

A possible traverse order to generate the �at data �ow graph and the laun
h-

ing 
ommands is:

1. FluidSimulation instantiates the 3 
omponents: MetaModule-MPI(Fluid),

MetaModule(OpenGLRender) and Gather(2DMerge).

2. MetaModule-MPI(Fluid) 
reates the PatternParallel(Fluid) 
omponent.

3. PatternParallel(Fluid) instantiates the 4 Fluid modules and set their ranks.

4. Gather(2DMerge) dete
ts the 4 Fluid and 
reates the gather tree with 3

2DMerge �lters. Ea
h Fluid is 
onne
ted to one leave of the gather tree

a

ording to their rank.

5. MetaModule(OpenGLRender) 
reates the OpenGLRender module.

6. MetaModule-MPI(Fluid) generates the MPI 
ommand line with the appro-

priate list of hosts and ranks.

7. MetaModule(OpenGLRender) generates the UNIX 
ommand line to laun
h

the rendering in the appropriate X-server.

6.2 Case 2: Real-Time 3D Modeling

We ported a parallel real-time 3D modeling appli
ation. It 
onsists in 
omputing

in real-time a 3D model of a s
ene from the various 2D video-streams a
quired

by multiple video 
ameras surrounding the s
ene [31℄ (Fig. 7.a). Real-time 3D



Fig. 6. a) Fluid appli
ation. Four MPI pro
esses 
ompute a �uid simulation on a 2D
grid. A gather skeleton merges results from MPI pro
esses and sends the full grid
to an OpenGL renderer. b) C++ des
ription of the FluidSimulation 
omponent that
en
apsulates the appli
ation.

modeling enables full body intera
tions into a virtual environment [4℄. 3D mod-

eling is both I/O and 
omputation intensive. We typi
ally use between 6 and



Fig. 7. a) A 3D model of a person 
omputed from 6 
ameras. b) Des
ription of the
appli
ation. This 
omposite 
ontains 4 
omposite 
omponents.

15 
ameras, ea
h one a
quiring 30 images per se
onds. The 
omputation of 3D

models must mat
h the 
amera frequen
y and run in less than 100 ms per 3D

model to keep the overall laten
y small enough to enable intera
tions. A paral-

lelization is thus required. Parallelization is based on several steps. For sake of


on
iseness we just give an overview of the parallel algorithm here. Refer to [32℄

for details. First, the video stream of ea
h 
amera is a
quired and �ltered to

subtra
t the ba
kground and 
ompute the image silhouette. This pipeline is exe-


uted in parallel on ea
h ma
hine a 
amera is 
onne
ted to. Next silhouettes have

to be redistributed for 
omputing the 3D model. 3D modeling is implemented

with 3 parallel pro
essing steps separated by data redistributions.

This appli
ation 
ontains 4 
omposite 
omponents (Fig. 7.b): a video a
-

quisition 
omponent, a 3D modeling 
omponent, a physi
al 
omponent and a

rendering one. The video a
quisition 
omponent is a parallel pattern 
ontaining

a pipeline of the di�erent steps from a
quisition to silhouette extra
tion. The

3D modeling 
omponent is another hierar
hy of 
omponents making an intensive

use of various skeletons. Physi
al simulations are 
omputed by SOFA [33℄, an

external framework. This framework 
omputes 
ollisions between virtual obje
ts

and user 3D model. The rendering 
omponent renders all meshes (virtual obje
ts

and user 3D model) and the virtual environment. The appli
ation designed is

independent from the number of pro
essors available on the target ma
hine, and

from the number of 
ameras and their mapping on the ma
hines.

This appli
ation represents a signi�
ant development e�ort involving several

developers over several years. Developments started in 2002 using MPI. It was

qui
kly abandoned as MPI proved not to o�er a su�
ient level of modularity for

this type of intera
tive appli
ation. A 
omputer vision spe
ialist should be able

to work on the a
quisition pipeline without having to worry about the MPI 
ode



or the overall 
oheren
y of the 
ommuni
ation s
hemes. We swit
hed to FlowVR

that better separates the 
ode of the tasks (the modules) from the task 
oor-

dination issues. But as the appli
ations grew, for instan
e texturing of the 3D

model started in 2006 and SOFA was only added in 2007, the FlowVR network

be
ame very 
omplex and bugs di�
ult to tra
k and solve. Swit
hing to the

hierar
hi
al 
omponent approa
h in
reased signi�
antly the appli
ation main-

tainability, s
alability and portability. It did not dire
tly modify the �at data

�ow graph and so the performan
e. But be
ause the modularity improved, per-

forman
e enhan
ements proved easier to implement. Several videos are available

at http://�owvr.sf.net showing the evolution of the appli
ation and the level of

performan
e rea
hed.

Let now fo
us on the a
quisition 
omponent. The full pipeline from 
amera

to image silhouette is implemented in a 
omposite 
omponent. Using the par-

allel skeleton, we are able to instantiate this pipeline for all 
ameras (Fig. 8).

These pipelines 
an be driven from a user interfa
e for on-line tuning of some

parameters. To implement this new feature we used 3 parallel skeletons and 1

sampling skeleton (Fig. 9).

Controllers ease extensions of this basi
 implementation of the a
quisition


omponent. For instan
e, we developed a 
ontroller that adds a supervision in-

terfa
e to 
ontrol these pipelines. This supervision 
onsists in a graphi
 user

interfa
e to set some parameters for the di�erent modules in the pipeline. For

example, the user 
an set the a
quisition rate. This interfa
e also displays the

outputs from several stages of the pipeline. We use this interfa
e to 
ontrol and

debug the a
quisition algorithms. We implemented this 
ontroller using a new


omponent that en
apsulates the graphi
s interfa
e. This 
ontroller also adds

several asyn
hronous 
ommuni
ations that send parameters to pipeline 
om-

ponents (Fig. 9). These 
ommuni
ations use the sampling skeleton. This imple-

mentation enables to separate the main implementation of the pipeline from this

supervision aspe
t. It improves the modularity and provides a simple solution

to extend the appli
ation.

Fig. 8. Flat data �ow graph of the a
quisition 
omponent for 6 
ameras (50 nodes and
68 edges).



Fig. 9. Flat data �ow graph of the a
quisition 
omponent for 6 
ameras and a super-
vision interfa
e (105 nodes and 176 edges).

7 Con
lusion

We presented a framework to use a hierar
hi
al 
omponent model for intera
tive

appli
ations. Our main goal was to ensure a high level of modularity for large

appli
ations involving parallel 
omponents and advan
ed 
oupling s
hemes. Con-

�guration of 
omponents is deferred to 
ontrollers. It enables us to separate some

aspe
ts of a 
omponent from its 
ore fun
tional nature. Controllers are 
alled in

a traverse pro
ess. We presented a traverse algorithm that 
alls the 
ontrollers

in an appropriate order or produ
e an error if 
ompletion is not possible due to


y
les or missing data. This approa
h was implemented for the FlowVR middle-

ware and proved e�e
tive to leverage the modularity of appli
ations.
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