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Abstract. This pap er fo cuses on parallel in teractiv e applications rang-

ing from scien ti�c visualization, to virtual realit y or computational steer-

ing. In teractivit y mak es them particular on three main asp ects: they are

endlessly iterativ e, use adv anced I/O devices, and m ust p erform under

strong p erformance constrain ts (latency , refresh rate). A data �o w graph

is a common approac h to describ e suc h applications. Edges represen t

data streams while v ertices are no des pro cessing incoming data streams

and pro ducing new data streams. When applications b ecome large this

approac h sho ws its limits in terms of main tainabilit y and p ortabilit y . In

this pap er, w e prop ose to use the comp osite design pattern to extend this

mo del for supp orting hierarc hies of comp onen ts. The comp onen t hierar-

c h y is tra v ersed to instan tiate the application and extract the data �o w

graph required for the execution. This approac h has b een implemen ted

for the Flo wVR middlew are. It enables to de�ne parametric comp osite

comp onen ts, commonly called sk eletons, that can b e reused in v arious

applications. This approac h pro v ed to signi�can tly lev erage application

mo dularit y as presen ted in di�eren t case studies.

Keyw ords: In teractiv e Applications; P arallelism; Comp onen ts; Com-

p osite Design P attern

1 In tro duction

An in teractiv e application in v olv es a program and a user in teracting in an end-

less iterativ e pro cess through input and output devices. It is often referred to a

"h uman in the lo op sim ulation". T o da y , an emerging class of in teractiv e applica-

tions in tends to asso ciate virtual realit y , scien ti�c visualization, sim ulation and

application steering. It leads to v ery complex applications coupling adv anced

I/O devices, large data sets, v arious parallel co des. T o b e in teractiv e, these ap-

plications m ust p erform under strong p erformance constrain ts, often measured

in terms of latency and refresh rate.

F or example, the Hercules system couples an earthquak e sim ulation and an

on-line visualization using 2000 pro cessors to reac h the frequency of 2Hz on a



1200 billions elemen ts sim ulation [1]. Other initiativ es in tend to design cross-

con tinen tal in teractiv e applications relying on the p erformance of optical net-

w orking [2]. A n um b er of virtual realit y applications are relying on parallel ma-

c hines to pro vide the required I/O and computing resources. Blue-C [3] and

Grimage [4] are go o d examples of high p erformance immersiv e platforms relying

on parallel mac hines to pro cess in real time data acquired through a net w ork of

cameras.

In this pap er, w e fo cus on t w o issues faced when designing suc h applications:

� Soft w are engineering issues where m ultiple pieces of co des (sim ulation co des,

graphics rendering co des, device driv ers, etc.), dev elop ed b y di�eren t p er-

sons, during di�eren t p erio ds of time, ha v e to b e in tegrated in the same

framew ork to prop erly w ork together.

� Hardw are p erformance limitations b ypassed b y m ultiplying the units a v ail-

able (disks, CPUs, GPUs, cameras, video pro jectors, etc.), but in tro ducing

at the same time extra complexit y . In particular it often requires to in tro-

duce parallel algorithms and data redistribution strategies, that should b e

generic enough to minimize h uman in terv en tion when the target execution

platform c hanges.

Most iterativ e applications can b e seen as an assem bly of static tasks endlessly

pro cessing incoming data and forw arding results to other tasks. Man y scien ti�c

visualization to ols use this data �o w graph mo del to sp ecify the applications [5].

But the graph tends to quic kly b ecome complex as the application size gro ws,

impairing the mo dularit y .

In this pap er, w e prop ose to rely on the comp osite design pattern to extend

the data �o w graph mo del. Edges are comp onen ts that can recursiv ely con tain

other comp onen ts. V ertices link sibling comp onen t p orts or paren t/c hild p orts.

T o enforce the genericit y of the describ ed application, comp onen ts defer in tro-

sp ection and auto-con�guration pro cesses to con trollers. A con troller is lo cal to

a giv en comp onen t, but it ma y get extra data consulting the state of the neigh-

b or comp onen ts or through external data rep ositories. These con trollers, that

can generate new comp onen ts for instance, are called recursiv ely and rep eatedly

in a tra v erse pro cess un til reac hing a �xed p oin t. A tra v erse either leads to an

error (missing data impairs the tra v erse completion) or a success. F or instance

a tra v erse is called to extract the data �o w graph required for the execution

from this hierarc hical application description. This approac h enables us to de�ne

highly generic comp osite comp onen ts, enforcing the application main tainabilit y

and p ortabilit y . In particular, w e can de�ne sk eletons, i.e. parametric comp osite

comp onen ts, that encapsulate commonly used and optimized parallel pro cessing

patterns. This approac h has b een implemen ted for the Flo wVR middlew are [6].

Section 2 discusses related w orks. After an o v erview of Flo wVR (section 3),

w e presen t the hierarc hical comp onen t mo del in section 4. Section 5 presen ts a

collection of sk eletons built using our mo del. Section 6 fo cuses on 2 case studies

to discus the b ene�ts of our approac h on real applications, b efore to conclude in

section 7.



2 Related W ork

The goal of scien ti�c visualization is to pro cess large data sets to compute im-

ages. In teractivit y enables for instance users to c hange their p oin t of view on

the data set or the transfer function applied for v olume rendering. Applications

are dev elop ed with visualization en vironmen ts lik e Op enD X [7], Iris Explorer [8]

or VTK [9]. These en vironmen ts are usually based on a data �o w graph mo del

where pro cessing tasks receiv e data and generate new ones. Most of them sup-

p ort parallel executions. An application is basically a list of �lters applied to the

data set b efore rendering. The �rst natural lev el of parallelism is to distribute

the di�eren t steps of the �lter pip eline on di�eren t mac hines. Because the data

set is read only , the pip eline can easily b e duplicated and executed in parallel

on sub parts of the data set [10]. A dv anced parallel rendering algorithms exist,

based for instance on sp eci�c parallel data structures and dynamic w ork bal-

ancing sc hemes. In this case they are implemen ted on their o wn, usually using

classical parallel programming languages, b ecause visualization en vironemen ts

do not pro vide the necessary constructs [11].

A ttempts to asso ciate virtual realit y , scien ti�c visualization and sim ulations

push forw ard the complexit y of in teractiv e applications. They in v olv e v arious

sim ulation co des that ma y generate large data sets, adv anced I/O devices, lik e

net w ork of cameras, pro jector arra ys, haptic devices. Pip eline m ust b e used

with care. It impro v es the application frequency , but also increases the latency .

So to ensure a go o d trade-o� b et w een frequency and latency m ultiple forms of

parallelism are asso ciated, from pip elines or data parallelism to dynamic task

parallelism.

In virtual realit y , to ensure an e�cien t data redistribution b et w een paral-

lel algorithms that ma y run at di�eren t and v arying frequencies, complex cou-

pling sc hemes asso ciating data re-sampling and collectiv e comm unications are re-

quired. Dedicated en vironmen ts lik e Flo wVR [6], Op enMask [12] or CO VISE [13]

prop ose di�eren t approac hes to supp ort suc h features. Ho w ev er, the resulting ap-

plication co de tends to b e di�cult to b e main tained when reac hing a certain size.

Connectivit y b et w een pro cessing tasks (comm unication c hannels) are expressed

b y direct links b et w een the corresp onding elemen ts: it requires the concerned el-

emen ts b e directly visible one from eac h other, prev en ting attempts to strongly

structure the co de b y encapsulating patterns in metho ds or functions.

Comp onen t mo dels, lik e CCA (Common Comp onen t Arc hitecture) or CCM

(Corba Comp onen t Mo del), pro vide Arc hitecture Description Languages for dis-

tributed applications. SCIRun, an en vironmen t dedicated to scien ti�c visualiza-

tion, is based on the CCA mo del [14]. Some extensions in tend to enforce the

supp ort of parallel comp onen ts and the asso ciated coupling patterns [15]. But

these mo dels su�er from the same limitations as the systems men tioned earlier

(Flo wVR, CO VISE) regarding the mo dularit y of parallel comp onen t coupling.

F ractal [16] is a hierarc hical comp onen t mo del. W e are a w are of one implemen-

tation of F ractal for parallel (grid) applications: ProA ctiv e [17]. A ProA ctiv e

comp osite comp onen t can b e a parallel comp onen t. But redistribution patterns



are co ded in to the p orts of the parallel comp onen ts. A pattern cannot b e mo di-

�ed without mo difying the comp onen t, limiting the application mo dularit y .

The sk eleton mo del prop oses a pattern language for parallel programming [18,

19]. A program is written from the comp osition of prede�ned parallel patterns.

V arious en vironmen ts rely on this mo del lik e ASSIST [20] for grid computing

or Skipp er [21] for vision applications. Sk eletons ha v e a clear seman tics, can b e

asso ciated to a cost mo del and hide their implemen tation details to the applica-

tion dev elop er. Giv en the target arc hitecture, the application is compiled do wn

to a sp ecialized parallel co de. Hierarc hies of sk eletons are supp orted b y some

en vironmen ts lik e Skipp er-D.

With the emergence of m ulticore arc hitectures and GPU programming, some

programming en vironmen ts prop ose to fo cus on a stream paradigm, lik e StreamIT

[22], Bro ok [23] or Cg [24]. They target streaming applications lik e video, v oice

or DSP programming. A program is usually a set of iterativ e mo dules that com-

m unicate via FIF O data c hannels. P arallelism is expressed b y the comp osition of

a reduced n um b er of sk eletons. F or example, in StreamIT, dev elop ers are allo w ed

to use 3 kinds of sk eletons: Pip eline, SplitJoin and F eedBac k Lo op. By limiting

the a v ailable sk eletons, it constrains the program to simple data parallel access

patterns, enabling to write e�cien t compilers for the targeted arc hitecture. It is

ho w ev er to o restrictiv e to ensure e�cien t executions on a general purp ose and

p oten tially heterogeneous parallel mac hine.

3 Flo wVR

W e presen t in this section Flo wVR [6]. Our comp onen t mo del relies on this mid-

dlew are. Flo wVR is dedicated to parallel in teractiv e applications. It is based on

the data �o w mo del also used b y other scien ti�c visualization to ols. A Flo wVR

application is a net w ork of static iterativ e pro cesses connected b y data �o w

c hannels. The main target applications include virtual realit y and scien ti�c vi-

sualization.

Flo wVR has b een used for dev eloping v arious large in teractiv e applications [25,

26]. Flo wVR is op en source

1

. It is distributed with extensions lik e Flo wVR-

Render that enables distributed rendering or VTK-Flo wVR that encapsulates

VTK[9] applications in to Flo wVR Mo dules [27].

3.1 Flo wVR Run-time

An application is comp osed of mo dules exc hanging data through a Flo wVR net-

w ork. A mo dule is an endless iterativ e co de that de�nes input and output p orts.

A t eac h iteration it reads incoming data from input p orts, pro cesses these data

and writes the results on output p orts. A mo dule runs in its o wn indep enden t

pro cess or thread, th us reducing the e�ort required to turn an existing co de in to

a mo dule. F or instance an MPI program can b e mo di�ed to de�ne one mo dule

p er pro cess.

1

Flo wVR is a v ailable at h ttp://�o wvr.sf.net



The Flo wVR net w ork is handled at run-time b y a Flo wVR daemon running

on eac h host of the target mac hine. Daemons act as brok ers. They rela y messages

b et w een mo dules. Mo dules are not a w are of the existence of other mo dules. A

mo dule only exc hanges data with the daemon that runs on the same host. If

the destination mo dule runs on the same host, the daemon giv es this mo dule

a p oin ter to the data (messages are stored in shared memory segmen ts). If the

destination runs on a distan t host, the mo dule sends the data to the daemon of

this host using TCP . A t reception the daemon stores the message in a shared

memory segmen t and handles a p oin ter to the destination mo dule.

The role of the daemon is not limited to data forw arding. It can load plugins

to pro cess data, duplicate, merge or split messages for instance. The user can

de�ne its o wn plugins if required. Notice that plugins ha v e a less restricted

access to the shared memory than mo dules, enabling to implemen t more e�cien t

message handling actions.

Eac h Flo wVR application is managed b y a sp ecial mo dule, called a con troller,

automatically loaded at starting time. The con troller �rst starts the application's

mo dules using their o wn launc hing command, ssh or mpirun for instance. Once

launc hed, mo dules register to their lo cal daemon that sends an ac kno wledgmen t

to the con troller. Then, the con troller sends to eac h daemon the routing table

and list of plugins to load to implemen t the Flo wVR net w ork.

3.2 Flat Data Flo w Graph

Fig. 1. The �at data �o w graph of a large Flo wVR application. Edges represen t pro-

cessing tasks and v ertices data c hannels.



A t lo w lev el a Flo wVR application is mo deled b y a �at data �o w graph

comp osed of:

� Mo dules with input and output p orts, eac h one is mapp ed on a giv en host,

� Filters that are daemon plugins. Lik e mo dules, �lters ha v e input and output

p orts, and are mapp ed on a giv en host.

� Connections that represen t FIF O data c hannels. A connection connects one

source input p ort to a destination output p ort.

� Routing no des that ha v e one input p ort and one or more output p orts. They

are assigned to a giv en host and mo del message routing actions.

In the �rst v ersions of Flo wVR, the application dev elop er had to sp ecify its

application describing this graph. He w as assisted b y a library of P erl functions

that encapsulated some commonly used patterns. Ho w ev er large applications

pro v ed di�cult to debug and main tain, motiv ating the adoption of a hierarc hical

approac h to further enforce the application mo dularit y (Fig. 1).

4 Comp onen t Mo del

W e adopt a hierarc hical comp onen t mo del to describ e a Flo wVR application. It

is based on the comp osite design pattern [28].

4.1 Hierarc hical Comp onen ts

A comp onen t has an in terface de�ned b y a set of p orts. W e distinguish t w o kinds

of comp onen ts:

Primitiv e comp onen ts. A primitiv e comp onen t is a base comp onen t that can-

not con tain an other comp onen t. Primitiv e comp onen ts are mo dules, �lters,

routing no des and connections.

Comp osite comp onen ts. A comp osite comp onen t con tains other comp onen ts

(comp osite or primitiv e). It has input and output p orts. A p ort is visible from

b oth, the outside and the inside of the comp onen t. It iden ti�es the data

that can cross a comp onen t b oundary . Comp onen t encapsulation is strict. A

comp onen t can not b e directly con tained in to t w o paren t comp onen ts.

4.2 Links

A link connects t w o comp onen t p orts. It cannot directly cross a comp onen t

mem brane. A link b et w een 2 p orts is allo w ed only for the 2 follo wing cases:

� A descendan t link connects a p ort of a paren t comp osite comp onen t to a p ort

of one of its c hild comp onen t. Suc h links m ust alw a ys connect an input/input

or output/output pair of p orts.

� A sibling link connects t w o p orts of t w o comp onen ts ha ving the same paren t

comp onen t. Suc h a link m ust alw a ys connect an input/output pair of p orts.

P ort t yping can b e enforced if required, putting more constrain ts on the p orts

that can b e link ed. F or instance, link could b e restrained to connect only p orts

corresp onding to the same data t yp e.



4.3 Example

Fig. 2. Application example. Computes sim ulates the dynamics of a ball falling in to

a w ater tank. Results transit up to R ender for rendering. Captur e forw ards mouse

p ositions to R ender that uses them to render the sim ulation scene with the p oin t of

view requested b y the user.

Throughout this pap er, w e use a simple example (Fig. 2). It sho ws the clas-

sical structure of a basic in teractiv e application. In this iterativ e sim ulation,

comp onen t Computes publishes its state at eac h iteration. W e can for instance

consider that this sim ulation computes the dynamics of a ball falling in to a

w ater tank. Eac h sim ulation state is receiv ed b y a R ender comp onen t. F or a

giv en p oin t of view, this comp onen t computes an image giving a view on the

sim ulation scene. The user can con trol this p oin t of view with a mouse. A Cap-

tur e comp onen t is in c harge of reading the mouse p osition and forw arding it to

R ender .

F or sak e of simplicit y , w e k eep this application sync hronous, i.e. the R ender

comp onen t can only start the next iteration if it receiv es data from Computes

and Captur e . Often real applications lo ose this sync hronization b y in tro ducing

data sampling comp onen ts (a sampling pattern is presen ted in section 5).

Using the hierarc hical comp onen t mo del, the example is structured as follo ws

(Fig. 2):



Fig. 3. a) T w o lev els of hierarc h y for the Conne ct comp onen t. The sk eleton de�ned b y

NtoOne is generated according to the n um b er of Computes primitiv e comp onen ts. b)

The �at data �o w graph for the application. Dashed sets sho w the comp osite comp o-

nen ts the graph elemen ts are related to (connections are arro ws, mo dules are in green

and �lters in blue).



� As the Captur e and R ender comp onen ts are closely related, they are stored

in a comp osite comp onen t called Visualization . This encapsulation is a com-

mo dit y that enables to easily reuse this assem bly ha ving just to handle the

Visualization comp onen t.

� The Computes comp onen t is actually a parallel application that spa wns n
pro cesses. The goal is to b e able to sp eed-up the sim ulation in v olving more

pro cessors if a v ailable. Computes is mo deled as a comp osite comp onen t with

one output p ort out to send its sim ulation state at eac h iteration. It con-

tains n c hild comp onen ts Compute/0 ,..., Compute/n-1 . These are primitiv e

comp onen ts, eac h one ha ving an output p ort out link ed to the out p ort of

Computes . The v alue n and where these n pro cesses are mapp ed on a target

arc hitecture is unkno wn at the time of the application design. They will b e

instan tiated later when tra v ersing the application to call con�guration con-

trollers. Notice that comm unications can tak e place b et w een the di�eren t

parallel pro cesses, but they are not mo deled here. W e consider that they are

under the resp onsibilit y of the programming en vironmen t used to parallelized

the application, MPI for instance.

� Computes b eing a parallel comp onen t, eac h pro cess spa wned computes one

part of the sim ulation state. The Visualization comp onen t is not designed to

receiv ed partial results. W e could mo dify the Visualization comp onen t, but

w e actually prefer to manage this issue outside of this comp onen t. Applica-

tion mo dularit y is enforced b y delegating data redistribution issues to sp e-

cialized comp onen ts. W e use an extra comp onen t, called Conne ct , b et w een

Computes and Visualization . Conne ct is in c harge of gathering the partial

results from the v arious Compute/i pro cesses to forw ard a single message

con taining a full sim ulation state to Visualization . Conne ct is a comp osite

comp onen t (Fig. 3.a). It is built from the NtoOne comp onen t. This com-

p onen t encapsulates a generic tree pattern for data redistribution. Conne ct

just set the parameters of NtoOne : the arit y of the tree (2) and the t yp e

of the comp onen t used for the tree no des ( Mer ge ). The actual con ten t of

NtoOne is only kno wn once Computes is prop erly instan tiated. Only at this

p oin t NtoOne kno ws ho w man y pieces of data it has to gather to set the

tree depth. The NtoOne con�guration con troller m ust b e executed after the

Computes con�guration con troller. W e see here that the tra v erse algorithm

in c harge of executing the con�guration con trollers has to resp ect a giv en

pro cessing order. A p ossible tra v erse order is: Computes, Visualization, Con-

ne ct, NtoOne, Mer ge/0, Mer ge/1, Mer ge/2, Compute/0, Compute/1, Com-

pute/2, Compute/3, Captur e, R ender . Mer ge is a primitiv e comp onen t that

builds one message sen t on its out p ort from the 2 messages it reads on its

in/0 and in/1 p orts.

Notice that if the application is con�gured with only one comp onen t Com-

pute/0 , Mer ge b ecomes a simple p oin t-to-p oin t connection b et w een Compute/0

and R ender .

The mo del w e prop ose �rst target applications with static comp onen ts, i.e.

without comp onen ts created while the application is running. Because of their



iterativ e nature, in teractiv e applications tend to b e mostly static. Ho w ev er, if

required for some parts of the application, a comp onen t can dynamically create

or kill threads or pro cesses as long as it implemen ts a pro xy that hides this

dynamic b eha vior. W e are also w orking on extending the mo del to supp ort some

lev el of run-time recon�guration.

4.4 Con trollers

T o impro v e the application genericit y and th us its p ortabilit y , instan tiation of

some comp onen t asp ects are deferred to con trollers. A con troller is lo cal to a

comp onen t. It can only mo dify the state of its comp onen t. It can read the state

of other comp onen ts its o wner is link ed to (directly or not). A comp onen t can

ha v e sev eral con trollers. It usually enforces mo dularit y to ha v e m ultiple sp ecialize

con trollers. W e distinguish 2 t yp es of con trollers:

� An in trosp ection con trollers just get data from its comp onen t. F or instance

an in trosp ection con troller can b e dedicated to prin t its comp onen t name in

a �le.

� A con�guration con troller mo di�es its comp onen t state. In the example ap-

plication, the c hild comp onen ts of Computes are generated b y suc h a con-

troller.

Con trollers are called during an application tra v erse. Usually one tra v erse

just calls one con troller p er comp onen t. During a tra v erse, parameters can b e

exc hanged b et w een con trollers. It enables for instance to exc hange a �le descrip-

tor where eac h con troller app ends the name of its comp onen t. The �nal result

of the tra v erse is a list of all application comp onen ts. The result ma y of course

dep end on the execution order of the di�eren t tra v erses.

Our mo del imp oses one con�guration con troller, called exe cute . This con-

troller creates c hild comp onen ts. F or example, in the Computes comp onen t, the

exe cute con troller creates all Compute/i primitiv e comp onen ts and links them to

Computes . Data distribution comp onen ts usually ha v e exe cute con trollers that

need to get data from the neigh b or comp onen ts. F or instance, the exe cute con-

troller of NtoOne needs to get the n um b er of Compute/i comp onen ts to create

the merging tree.

Dev elop ers can create con trollers dedicated to a giv en asp ect. A con troller

can b e in c harge of mapping primitiv e comp onen ts to the target arc hitecture

pro cessors. Implemen ting mapping in a con troller enables to k eep the application

description indep enden t of the mapping. In Flo wVR, the application is �rst

tra v ersed to call the exe cute con troller, then a mapping con troller is called, and

a third con troller generates the �at data �o w graph.

An other example of in trosp ection con troller used for Flo wVR is the com-

mand line generator. The construction of command lines to launc h mo dules is

delegated to an in trosp ection con troller. This con troller builds a command line

using data related to the Flo wVR net w ork (hosts list, n um b er of pro cesses), con-

�guration �les (target arc hitecture description) or user parameters (application



sp eci�c parameters). This sp eci�c con troller is em b edded in to comp osite com-

p onen ts called metamo dules. A metamo dule handles mo dules that are logically

related, in particular when they are all started from a single command. This is

for instance the case for a MPI co de that uses mpirun to start all its pro cesses.

Notice that a con troller can b e seen as an asp ect (in the Asp ect Orien ted

Programming w a y). Nev ertheless, w e do not ha v e co de w ea ving. Con trollers are

em b edded in comp onen ts b y the programmer.

4.5 T ra v erse Algorithm

As seen for the example (Section 4.3), in a tra v erse the execution of con trollers

ma y need to ob ey a certain order to resp ect data dep endencies. W e prop ose

a simple algorithm that guaran tees to complete the tra v erse when p ossible or

return the list of misprogrammed comp onen ts if some data dep endencies cannot

b e solv ed whatev er the execution order is.

The tra v erse algorithm is a greedy pro cess. The algorithm manages a queue

of non-executed comp onen ts, initialized with the top-lev el comp onen ts of the ap-

plication. F or eac h comp onen t in this queue, the algorithm tries to execute the

asso ciated con troller. If the con troller is successfully executed, then all of its c hil-

dren are pushed in the queue. Otherwise, the algorithm restores the comp onen t

initial state and push it at the end of the queue. The tra v erse ends successfully

when the queue is empt y . If no con troller can b e called on the rest of the com-

p onen ts in the list, then the algorithm stops in a fail state. The con troller of the

remaining comp onen ts cannot b e executed either b ecause at least one of these

comp onen ts is miscon�gured (a parameter is not instan tiated for instance), or

b ecause a cycle of dep endencies has b een in tro duced when assem bling the com-

p onen ts.

4.6 T ra v erse Pro of

W e pro v e the tra v erse algorithm alw a ys ends, with success if a solution exists,

and that the n um b er of con troller calls, successful or not, is at most quadratic

in the n um b er of comp onen ts.

Let C b e the set of all comp onen ts in an application and Ncomp the size

of C . The goal of the algorithm is to iterate on all comp onen ts in C with a

consistan t order. W e put in the non-executed queue a mark er that denotes the

starting p oin t. Eac h time the mark er comes bac k to the fron t of the queue, it

is app ended at the end of the queue. W e coun t the n um b er of times the mark er

has reac hed the fron t since the algorithm started. It denotes what w e call in the

follo wing the numb er of iter ations .

Let NonExecutedk = f c 2 C / the con troller of c has not b een executed

at the iteration k g and Executedk = f c 2 C / the con troller of c has b een

successfully executed during the iteration k g. W e call N the iteration that

reac hes a �xed p oin t, i.e. the �rst iteration where ExecutedN = ; . In this case,

the algorithm stops. The miscon�gured comp onen ts or dep endency cycles are

con tained in NonExecutedN .



Let Ek =
S k

i =1 (Executedi ) b e the set of comp onen ts successfully executed

from the �rst to the kth
iteration. Let Ek =

S 1
i = k (NonExecutedi ) b e the set of

comp onen ts that ha v e to b e executed after the iteration k .

W e call E1 =
T 1

i =1 E i the set of comp onen ts that cannot b e executed.

Th us w e ha v e:

� 8k; C = Ek � Ek

� E0 = C and E0 = ;

W e �rst pro v e the algorithm alw a ys ends.

Prop osition 1. The tr averse algorithm r e aches a �xe d-p oint with N � Ncomp

and NonExecutedN = E1

Pr o of. During execution of tra v erse, w e are assured that ExecutedN 6= ; , so for

all k w e ha v e Ek+1 =
S 1

i = k+1 (NonExecutedi ) �
S 1

i = k (NonExecutedi ) � Ek .

So EN decreases to E1 . The algorithm reac hes a �xed-p oin t where lim k !1 Ek =
E1 .

As C = Ek � Ek , if at the iteration k w e ha v e Ek = Ek+1 then Ek = Ek+1 .

So the algorithm reac hes the �xed-p oin t at k .

Consequen tly Ek strictly decreases to E1 ) N � j E0j = Ncomp .

W e no w fo cus on the complexit y of the algorithm.

Prop osition 2. The tr averse algorithm p erforms at most N 2
comp c al ls to c on-

tr ol lers.

Pr o of. Let Calls b e the total of calls to con troller. Calls =
P

k � N jNonExecutedk j .

Previously , w e pro v ed:

� N � Ncomp

� 8k; NonExecutedk � C ) j NonExecutedk j � Ncomp

So Calls � N 2
comp

The o v erhead due to unsuccessful con troller calls can b e signi�can t. But

implemen ting an algorithm that solv es all constrain ts to iden tify an acceptable

execution order w ould b e complex or it w ould require the application dev elop er

to enco de extra information in to its program to help that algorithm. Our solution

is a go o d trade-o� b et w een scalabilit y and complexit y of the implemen tation. W e

exp erimen ted applications with 200 comp onen ts. T ra v erse computation time is

ab out one second only .

W e no w c haracterize E1 , the set of remaining comp onen ts. Let Data = f c 2
C / c cannot b e executed b ecause a data is missing g and Dep = f c 2 C /

c cannot b e executed b ecause it dep ends on a comp onen t that has not b een

executed y et g. No other reason can lead to a con troller call failure. So w e ha v e

E1 = Data [ Dep.

Prop osition 3. If Data = ; and E1 = Dep 6= ; then ther e is at le ast one

dep endency cycle in E1



Pr o of. Assume there is no dep endence cycle in Dep. So there is a longest de-

p endency path. Let c and d b e the comp onen ts at the extremities of one of the

longest dep endency paths.

But b ecause c b elongs to Dep and not to Data ( Data = ; ), there exists e in

Dep suc h as c dep ends on e. So the path from e to d is longer than the longest

path from c to d. It con tradicts the assumption: there is a dep endence cycle in

Dep.

This prop osition sho ws the tra v erse algorithm can help debugging an appli-

cation. If the tra v erse fails, the user should �rst �x the comp onen ts with missing

data. Usually suc h �a ws are detected when the con troller fails if error raising

has b een prop erly programmed. Next, if the algorithm still fails, the user should

lo ok at suppressing the cyclic dep endencies. In our implemen tation w e rely on

exceptions to signal when con troller fail.

4.7 The Flo wVR F ron t-end

The hierarc hical comp onen t mo del only a�ects the fron t-end of Flo wVR (Fig. 4).

The run-time engine is not mo di�ed. Comp onen ts are written in C++ and com-

piled in to shared libraries. An application is also a comp osite comp onen t com-

piled in to a shared library . It can th us b e reused in other applications without

b eing recompiled. The Flo wVR fron t-end loads the application and applies a

sequence of sev eral tra v erses to pro duce the list of commands to start the mo d-

ules and the instructions to forw ard to the di�eren t daemons to implemen t the

application net w ork. The �at data �o w graph is usually sa v ed as it is useful for

debugging purp ose.

5 Sk eletons

W e presen t four base parametric comp osite comp onen ts, i.e. sk eletons, that

pro v ed to b e v ery useful for dev eloping in teractiv e applications. These sk eletons

pro vide users an easy w a y to handle parallel pro cessing patterns or complex

comm unication sc hemes. These sk eletons fully tak e adv an tage of the comp onen t

hierarc h y and mo dularit y pro vided b y the con troller based approac h. They are

templated to enforce their genericit y . Their instan tiation is deferred to their

exe cute con troller (Sect. 4.4):

Pip eline This is a v ery simple sk eleton mo deling a sequence of precessing steps.

It is mo deled b y a comp osite comp onen t con taining an arbitrary sequence

of link ed comp onen ts (primitiv es or comp osite).

P arallel This sk eleton creates N instances of a comp onen t passed as a tem-

plate. The sk eleton creates the same p orts than the template comp onen t.

Once the in ternal comp onen ts created, their p orts are link ed to their equiv-

alen t sk eleton p orts. The Computes comp onen t in our example could ha v e

b een alternativ ely designed b y encapsulating a Par al lel comp onen t pattern

using Compute as template comp onen t. This sk eleton can b e used as a shell



Fig. 4. The Flo wVR fron t-end. Comp onen ts (left to righ) are compiled, loaded and

tra v ersed to pro vide the mo dule launc hing commands and the instructions for deamons.

Once compiled, mo dules (top to b ottom) are started as requested b y the application.



for duplicating a giv en comp onen t. It can also b e used to encapsulate a

static parallel program. In this case comm unications due to parallelization

are not visible from the comp onen t p oin t of view. W e consider the parallel

programming en vironmen t used for the parallelization tak es care of these

comm unications.

T ree A tree sk eletons has t w o p orts, the ro ot and the lea v es. The n um b er of

lea v es in the tree is de�ned a tra v erse time according to the n um b er of

neigh b ors connected to the lea v es p ort. W e distinguish 2 sp ecializations of the

tree dep ending on the data propagation direction, either from ro ot to lea v es

(the OnetoN comp onen t) or from lea v es to ro ot (the NtoOne comp onen t).

The arit y of the tree is a parameter to b e instan tiated. The no de t yp e used to

build the tree is a template pattern. Here are some examples of comp onen ts

pattern built from T r e e :

Broadcast The simplest sk eleton that can b e built from the tree. It uses

the OnetoN sk eleton instan tiated with a primitiv e comp onen t, a rout-

ing no de, that forw ards the messages it receiv es on its input to eac h of

its outputs. The arit y of the broadcast tree dep ends on the n um b er of

outputs of the template comp onen t.

Scatter Similar to the Broadcast except that the template comp onen t splits

the input message in to sub-messages forw arded on its outputs. F or in-

stance, a classical 3D rendering parallelization approac h, called sort-

�rst [29], consists in ha ving a task resp onsible for one area of the screen

(Fig. 5.a). Th us, a task only requires to execute the graphics primi-

tiv es that will con tribute to its screen area. T o distribute the graphics

primitiv e, w e can use a Sc atter with a Cul ling comp onen t that uses a

fast metho d to test if a graphics primitiv e con tributes to a giv en screen

area [27].

Gather A OneT oN tree that uses a message merging template pattern.

Using a template comp onen t that sorts the in tegers it receiv es, it creates

a distributed merge sort (Fig. 5.b). This sk eleton is also used b y the

Conne ct comp onen t of our example (Fig. 3).

Sampling This sk eleton is sp eci�c to in teractiv e applications where tasks ma y

run at di�eren t frequencies. F or example, a ph ysical sim ulation has to run at

high frequency to b e stable, while graphics rendering usually runs b et w een 30

and 60 Hz. If the t w o tasks are directly connected with a FIF O connection, it

will force b oth tasks to run a the frequency of the slo w est one, the rendering

task in this case. T o a v oid this issue a common approac h is to sample the

incoming signal. This sampling could b e p erformed b y the rendering task,

making the rendering task less generic. T o enforce the mo dularit y , w e design

a sp ecial sk eleton that samples data streams under the con trol of their desti-

nation tasks. With this approac h neither the source neither the destination

tasks need to b e mo di�ed or ev en recompiled. The sampling sk eleton is an

assem bly of 2 comp osite comp onen ts (Fig. 5.c):

� The Filter comp osite comp onen t analyzes and samples the incoming

data stream according to an external p olicy . It has four p orts : in receiv es



the incoming data stream, out pro duces the sampled signal, fr e q sends

the frequency of the incoming stream and or der receiv es sampling orders.

� The Sampler comp osite comp onen t con trols the sampling p olicy . It has

t w o p orts : fr e q receiv es the frequency of the incoming stream and or der

sends orders ab out the stream sampling. Using the incoming stream

frequency , it decides the messages that ha v e to b e discarded and the

ones to repla y .

By c hanging the template comp onen ts Sampler and Filter di�eren t sampling

strategies can b e implemen ted.

Because there is no discon tin uit y from primitiv e comp onen ts to high-lev el

comp osite ones, the dev elop er can freely c ho ose to com bine, extend, sp ecialize

or simply ignore these sk eletons. In a sense the approac h w e prop ose is v ery close

to the one of the C++ Standard T emplate Library . This sk eletons can also b e

seen as a deriv ativ e of Co ols sk eletons [18] for a sp eci�c application domain.

One of the main di�erence is the absence of cost mo del.

Fig. 5. a) Sort-�rst scatter pattern. The Culling comp onen ts route the graphics primi-

tiv e for rendering the bunn y according to the screen area they pro ject on to. b) In teger

merge-sort scatter pattern. c) Sampling pattern. Filter is the op erativ e part of the com-

m unication: it pro cesses sampling on incoming messages �o w. Sampler is the con trol

part: it decides the sampling p olicy .

6 Case Studies

In this section, w e presen t t w o case studies taking adv an tage of the comp onen t

hierarc h y and the sk eletons presen ted in previous sections. The �rst application



sho ws an example of coupling MPI and Flo wVR. The second example is an

in teractiv e 3D mo deling application using a camera net w ork.

6.1 Case Study 1: MPI Fluid Sim ulation

W e implemen ted a �uid sim ulation algorithm [30] using MPI (Fig. 6.a). This

application sho ws ho w to in tegrate a MPI co de. The �uid sim ulation is based on

a 2D grid of cells. A t eac h new iteration, a new state is computed for eac h grid

cell. This state dep ends on the state at the previous iteration of the considered

cell and its four neigh b ors. The sim ulation is parallelized b y splitting the grid

cell in to blo c ks distributed amongst the di�eren t MPI pro cesses. Data exc hange

b et w een blo c ks are MPI comm unications, transparen t to Flo wVR. The MPI co de

is mo di�ed so that eac h pro cess is a Flo wVR mo dule with one output p ort to

send the result of eac h iteration. These mo dules are called Fluid/0 .... Fluid/N ,

the n um b er b eing assigned based on the rank pro vided b y MPI. Beside the actual

MPI co de of the mo dules, a Fluid primitiv e comp onen t is written. A metamo dule

Metamo dule-MPI implemen ts the con troller to generate the launc hing command

using mpirun . It also con tain a parallel sk eleton that creates the correct n um b er

of instances of the Fluid mo dule. It is imp ortan t here that the ranking b e the

same as the one assigned b y MPI. The Metamo dule-MPI comp onen t is link ed to

a Gather sk eleton (Fig. 5.b) using a 2DMer ge �lter as template. The goal here is

to gather the results of eac h MPI pro cess in to one full 2D grid forw arded to an

Op enGL renderer. F or more implemen tation details refer to the �uid example

pro vided with the Flo wVR source co de.

A p ossible tra v erse order to generate the �at data �o w graph and the launc h-

ing commands is:

1. FluidSimulation instan tiates the 3 comp onen ts: MetaMo dule-MPI(Fluid) ,

MetaMo dule(Op enGLR ender) and Gather(2DMer ge) .

2. MetaMo dule-MPI(Fluid) creates the PatternPar al lel(Fluid) comp onen t.

3. PatternPar al lel(Fluid) instan tiates the 4 Fluid mo dules and set their ranks.

4. Gather(2DMer ge) detects the 4 Fluid and creates the gather tree with 3

2DMer ge �lters. Eac h Fluid is connected to one lea v e of the gather tree

according to their rank.

5. MetaMo dule(Op enGLR ender) creates the Op enGLR ender mo dule.

6. MetaMo dule-MPI(Fluid) generates the MPI command line with the appro-

priate list of hosts and ranks.

7. MetaMo dule(Op enGLR ender) generates the UNIX command line to launc h

the rendering in the appropriate X-serv er.

6.2 Case 2: Real-Time 3D Mo deling

W e p orted a parallel real-time 3D mo deling application. It consists in computing

in real-time a 3D mo del of a scene from the v arious 2D video-streams acquired

b y m ultiple video cameras surrounding the scene [31] (Fig. 7.a). Real-time 3D



Fig. 6. a) Fluid application. F our MPI pro cesses compute a �uid sim ulation on a 2D

grid. A gather sk eleton merges results from MPI pro cesses and sends the full grid

to an Op enGL renderer. b) C++ description of the FluidSim ulation comp onen t that

encapsulates the application.

mo deling enables full b o dy in teractions in to a virtual en vironmen t [4]. 3D mo d-

eling is b oth I/O and computation in tensiv e. W e t ypically use b et w een 6 and



Fig. 7. a) A 3D mo del of a p erson computed from 6 cameras. b) Description of the

application. This comp osite con tains 4 comp osite comp onen ts.

15 cameras, eac h one acquiring 30 images p er seconds. The computation of 3D

mo dels m ust matc h the camera frequency and run in less than 100 ms p er 3D

mo del to k eep the o v erall latency small enough to enable in teractions. A paral-

lelization is th us required. P arallelization is based on sev eral steps. F or sak e of

conciseness w e just giv e an o v erview of the parallel algorithm here. Refer to [32]

for details. First, the video stream of eac h camera is acquired and �ltered to

subtract the bac kground and compute the image silhouette. This pip eline is exe-

cuted in parallel on eac h mac hine a camera is connected to. Next silhouettes ha v e

to b e redistributed for computing the 3D mo del. 3D mo deling is implemen ted

with 3 parallel pro cessing steps separated b y data redistributions.

This application con tains 4 comp osite comp onen ts (Fig. 7.b): a video ac-

quisition comp onen t, a 3D mo deling comp onen t, a ph ysical comp onen t and a

rendering one. The video acquisition comp onen t is a parallel pattern con taining

a pip eline of the di�eren t steps from acquisition to silhouette extraction. The

3D mo deling comp onen t is another hierarc h y of comp onen ts making an in tensiv e

use of v arious sk eletons. Ph ysical sim ulations are computed b y SOF A [33], an

external framew ork. This framew ork computes collisions b et w een virtual ob jects

and user 3D mo del. The rendering comp onen t renders all meshes (virtual ob jects

and user 3D mo del) and the virtual en vironmen t. The application designed is

indep enden t from the n um b er of pro cessors a v ailable on the target mac hine, and

from the n um b er of cameras and their mapping on the mac hines.

This application represen ts a signi�can t dev elopmen t e�ort in v olving sev eral

dev elop ers o v er sev eral y ears. Dev elopmen ts started in 2002 using MPI. It w as

quic kly abandoned as MPI pro v ed not to o�er a su�cien t lev el of mo dularit y for

this t yp e of in teractiv e application. A computer vision sp ecialist should b e able

to w ork on the acquisition pip eline without ha ving to w orry ab out the MPI co de



or the o v erall coherency of the comm unication sc hemes. W e switc hed to Flo wVR

that b etter separates the co de of the tasks (the mo dules) from the task co or-

dination issues. But as the applications grew, for instance texturing of the 3D

mo del started in 2006 and SOF A w as only added in 2007, the Flo wVR net w ork

b ecame v ery complex and bugs di�cult to trac k and solv e. Switc hing to the

hierarc hical comp onen t approac h increased signi�can tly the application main-

tainabilit y , scalabilit y and p ortabilit y . It did not directly mo dify the �at data

�o w graph and so the p erformance. But b ecause the mo dularit y impro v ed, p er-

formance enhancemen ts pro v ed easier to implemen t. Sev eral videos are a v ailable

at h ttp://�o wvr.sf.net sho wing the ev olution of the application and the lev el of

p erformance reac hed.

Let no w fo cus on the acquisition comp onen t. The full pip eline from camera

to image silhouette is implemen ted in a comp osite comp onen t. Using the par-

allel sk eleton, w e are able to instan tiate this pip eline for all cameras (Fig. 8).

These pip elines can b e driv en from a user in terface for on-line tuning of some

parameters. T o implemen t this new feature w e used 3 parallel sk eletons and 1

sampling sk eleton (Fig. 9).

Con trollers ease extensions of this basic implemen tation of the acquisition

comp onen t. F or instance, w e dev elop ed a con troller that adds a sup ervision in-

terface to con trol these pip elines. This sup ervision consists in a graphic user

in terface to set some parameters for the di�eren t mo dules in the pip eline. F or

example, the user can set the acquisition rate. This in terface also displa ys the

outputs from sev eral stages of the pip eline. W e use this in terface to con trol and

debug the acquisition algorithms. W e implemen ted this con troller using a new

comp onen t that encapsulates the graphics in terface. This con troller also adds

sev eral async hronous comm unications that send parameters to pip eline com-

p onen ts (Fig. 9). These comm unications use the sampling sk eleton. This imple-

men tation enables to separate the main implemen tation of the pip eline from this

sup ervision asp ect. It impro v es the mo dularit y and pro vides a simple solution

to extend the application.

Fig. 8. Flat data �o w graph of the acquisition comp onen t for 6 cameras (50 no des and

68 edges).



Fig. 9. Flat data �o w graph of the acquisition comp onen t for 6 cameras and a sup er-

vision in terface (105 no des and 176 edges).

7 Conclusion

W e presen ted a framew ork to use a hierarc hical comp onen t mo del for in teractiv e

applications. Our main goal w as to ensure a high lev el of mo dularit y for large

applications in v olving parallel comp onen ts and adv anced coupling sc hemes. Con-

�guration of comp onen ts is deferred to con trollers. It enables us to separate some

asp ects of a comp onen t from its core functional nature. Con trollers are called in

a tra v erse pro cess. W e presen ted a tra v erse algorithm that calls the con trollers

in an appropriate order or pro duce an error if completion is not p ossible due to

cycles or missing data. This approac h w as implemen ted for the Flo wVR middle-

w are and pro v ed e�ectiv e to lev erage the mo dularit y of applications.
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